Scientists were able to use lasers to create a "supercrystal." The key to making this happen? Frustration.

A team of scientists managed to use a laser pulse to create a crystal with giant repeating structures that are much larger than those in ordinary crystals, what’s known as a “supercrystal.”

But lasers have actually been used to transform materials into more ordered states of matter for decades, what made this instance particularly special was that this supercrystal could stay in that state for at least a year (potentially even longer had the study lasted longer).

This is one of the first examples of a material that achieved long-term stability after being rearranged using such a short laser pulse, and the key? A lot of frustration.

When blasted by photons from a laser, the electrons in matter get excited, before minimizing their energy again and quickly returning to their normal state. In that heightened phase, or on the way back down, the material might have properties the scientists are looking for, but scientists have to act fast to spot them because the properties might not stick around for long.

Scientists started with a crystal substrate they would use to grow single atomic layers of their material made of lead titanate and strontium titanate.

The scientists were looking for hidden states of matter by taking it out of its comfortable state, also known as its ground state. With the added energy from a sub-picosecond pulse of light the material arranged itself into repeating unit cells with a volume a million times greater than the lead titanate or strontium titanate it was based on.

It wasn’t just a crystal anymore. It was a supercrystal.

Learn more about the supercrystal and what it could mean for future research and the understanding of materials on this episode of Elements.

#Lasers #Supercrystal #StateOfMatter #Seeker #Elements #Science

This New State of Matter Is a Liquid and a Solid at the Same Time!

Supercrystal: A hidden phase of matter created by a burst of light

"Frustration" plus a pulse of laser light resulted in a stable 'supercrystal' created by a team of researchers led by Penn State and Argonne National Laboratory, together with University of California, Berkeley, and two other national laboratories.."

Supercrystal. Creating a new state of matter

"Finding these states is done by a pump-probe technique when a laser fires a photon of blue light at the sample for 100 femtoseconds. The pump light excites the electrons into a higher energy state and is quickly followed by a probe light, which is a gentler pulse of light that reads the state of the material."

Physicists Captured a Hidden 'Supercrystal' State of Matter With a Laser Burst

"You can't make supercrystals out of any old matter. The team used alternating layers of single-atom thick lead titanate and strontium titanate, stacked into a three-dimensional structure. They grew these layers on a base (substrate) of dysprosium scandium oxide, whose crystals are in between the size of crystals formed by the two other materials."

Code: Travel6. It is required to enter a promotional code. The promotion applies to a certain group of goods. The promotion is available to all shop customers. The promotion is available without any restrictions on the amount of the order.

More videos

VOA News 22 Sep 2019 23:23 CEST

Typhoon Tapah Slams Japan